The following additions, changes, and deletions were approved by the committee.

I. COURSE ADDITIONS, CHANGES, AND DELETIONS

AEROSPACE

CHANGE: AS 105. BASIC TRAINING. Credit for successful completion of basic training in the United States Air Force. Z grade. (4)

TO: AS 105. BASIC TRAINING. Credit for successful completion of Basic Training, ROTC Field Training, or Officer Training School in the U.S. United States Air Force. Z grade. (4)

CHEMISTRY AND BIOCHEMISTRY

CHANGE: CHEM 105. GENERAL CHEMISTRY I. Atomic and molecular structure, stoichiometry, solutions, physical properties of gases, liquids, and solids, chemical bonding, kinetics, thermodynamics and equilibrium, acid-base chemistry and the descriptive chemistry of the elements. Prerequisite: Minimum ACT mathematics score of 22 (SAT 510) or B minimum in Math 121, or B minimum in Math 125. (3)

TO: CHEM 105. GENERAL CHEMISTRY I. Atomic and molecular structure, stoichiometry, solutions, physical properties of gases, liquids, and solids, chemical bonding, kinetics, thermodynamics and equilibrium, acid-base chemistry and the descriptive chemistry of the elements. Prerequisite: Minimum ACT mathematics score of 22–23 (SAT 540-590) or C minimum in CHEM 101 or B minimum in Math 121 or B minimum in Math 125 or higher. (3)

ENGLISH

ADD: ENGL 375. INTRODUCTION TO MEDIEVAL STUDIES. This course introduces students to medieval culture and to seminal works of medieval literature. (Same as MLLL 375). (3)
ENVIRONMENTAL STUDIES

ADD: ENVS 385. ENVIRONMENTAL STUDIES INTERNSHIP. Internship with a business, a non-profit organization, or a government agency that includes a significant environmental component. Written analysis of internship experience and related academic paper required. Prerequisite: consent of Environmental Studies Director. (3).

HISTORY

ADD: HIS 391. SOUTH ASIA AND THE INDIAN OCEAN. The political, economic, and cultural transformations of South Asia and the Indian Ocean, emphasizing the development of modern states. (3).

MATHEMATICS

CHANGE: MATH 501. GENERAL TOPOLOGY I. Metric spaces, continuity, separation axioms, connectedness, compactness, and other related topics. Prerequisite: Math 555 with minimum grade of C. (3)

TO: MATH 501 GENERAL TOPOLOGY I. Metric spaces; Baire’s theorem; topological spaces; continuity; separation axioms; connectedness; compactness; and quotient and product topologies and other related topics. Prerequisite: Math 305 with minimum grade of C or graduate standing. (3)

CHANGE: MATH 502. GENERAL TOPOLOGY II. Introduction to algebraic topology. Prerequisite: Math 501 with minimum grade of C. (3)

TO: MATH 502. GENERAL TOPOLOGY II. Introduction to Algebraic invariants in topology. Prerequisite: Math 501 with minimum grade of C. (3)

CHANGE: MATH 513. THEORY OF NUMBERS I. Congruences; divisibility; properties of prime numbers; arithmetical functions; quadratic residues. Prerequisite: Math 305. (3)

TO: MATH 513. THEORY OF NUMBERS I. Congruences; divisibility; properties of prime numbers; congruences and modular arithmetic; quadratic reciprocity; and representation of integers as sums of squares arithmetical functions; quadratic residues. Prerequisite: Math 305 or graduate standing. (3)

CHANGE: MATH 514. THEORY OF NUMBERS II. Diophantine equations, distribution of prime numbers; and an introduction to algebraic number theory. Prerequisite: Math 513. (3)

TO: MATH 514. THEORY OF NUMBERS II. Arithmetic functions and their distribution; Diophantine equations, distribution of prime numbers; Dirichlet characters and primes in arithmetic progression; and partitions, and an introduction to algebraic number theory. Prerequisite: Math 513 and Math 555. (3)

CHANGE: MATH 555. ADVANCED CALCULUS I. Limits, continuity, power series, partial differentiation; multiple, definite, improper, and line integrals; applications. Prerequisite requirements for this course may also be satisfied by consent of instructor. Prerequisite: Math 305 with minimum grade of C. (3)

TO: MATH 555. ADVANCED CALCULUS I. Suprema and infima on the real line; limits, liminf and limsup of a sequence of reals; convergent sequences; Cauchy sequences; and series, absolute and conditional convergence of series. Limits, continuity, power series, partial differentiation; multiple, definite, improper, and line integrals; applications.
Prerequisite requirements for this course may also be satisfied by consent of instructor. Prerequisite: Math 305 with minimum grade of C or graduate standing. (3)

CHANGE: MATH 567. INTRODUCTION TO FUNCTIONAL ANALYSIS I. Metric spaces, Normed linear spaces and linear operators. Prerequisite requirements for this course may also be satisfied by consent of instructor. Prerequisite: Math 556 with minimum grade of C. (3)

TO: MATH 567. INTRODUCTION TO FUNCTIONAL ANALYSIS I. Metric spaces, Normed linear spaces and linear operators, Hilbert spaces, Banach spaces, Hahn-Banach Theorem, Banach Steinhaus Theorem, Open Mapping Theorem, weak topologies, Banach-Alaoglu Theorem, and Classical Banach spaces. Prerequisite requirements for this course may also be satisfied by consent of instructor. Prerequisite: Math 556 with minimum grade of C. (3)

CHANGE: MATH 568. INTRODUCTION TO FUNCTIONAL ANALYSIS II. Metric spaces, Normed linear spaces and linear operators. Prerequisite: Math 567 with minimum grade of C. (3)

TO: MATH 568. INTRODUCTION TO FUNCTIONAL ANALYSIS II. Topics in Banach space theory. Metric spaces, Normed linear spaces and linear operators. Prerequisite: Math 567 with minimum grade of C. (3)

CHANGE: MATH 575. MATHEMATICAL STATISTICS I. Mathematical treatment of statistical and moment characteristics; frequency distribution; least squares; correlation; sampling theory. Prerequisite: Math 262 with minimum grade of C. (3)

TO: MATH 575. MATHEMATICAL STATISTICS I. Mathematical treatment of statistical and moment characteristics; probability models; random variables; distribution theory; frequency distribution; least squares; correlation; central limit theorem; and multi-parameter models, sampling theory. Prerequisite: Math 262 with minimum grade of C or graduate standing. (3)

CHANGE: MATH 576. MATHEMATICAL STATISTICS II. Mathematical treatment of statistical and moment characteristics; frequency distribution; least squares; correlations; sampling theory. Prerequisite: Math 575 with minimum grade of C. (3)

TO: MATH 576. MATHEMATICAL STATISTICS II. Mathematical treatment of statistical inference; maximum likelihood estimation and maximum likelihood ratio test; minimum variance unbiased estimators; most powerful tests; asymptotic normality and efficiency; and Bayesian statistics, moment characteristics; frequency distribution; least squares; correlations; sampling theory. Prerequisite: Math 575 with minimum grade of C. (3)

CHANGE: MATH 653. THEORY OF FUNCTIONS OF REAL VARIABLES I. Sets, convergence; measure and integration; differentiation; variation; absolute continuity. (3)

TO: MATH 653. THEORY OF FUNCTIONS OF REAL VARIABLES I. Sets, convergence; Lebesgue measure and integration; differentiation; bounded variation; and absolute continuity of functions. (3)

CHANGE: MATH 654. THEORY OF FUNCTIONS OF REAL VARIABLES II. Sets, convergence; measure and integration; differentiation; variation; absolute continuity. (3)

TO: MATH 654. THEORY OF FUNCTIONS OF REAL VARIABLES II. Sets, convergence; General measure theory, and integration; differentiation; variation; absolute continuity. (3)
CHANGE: MATH 655. THEORY OF FUNCTIONS OF COMPLEX VARIABLES I. Complex functions; mappings, integration theory, entire functions; topics of current interest. (3)

TO: MATH 655. THEORY OF FUNCTIONS OF COMPLEX VARIABLES I. Complex numbers; analytic functions; mappings, complex integration; theory, entire Cauchy’s theorem and integral formula; Liouville’s theorem; maximum modulus principles; Schwarz’s lemma; sequences and series of analytic functions; isolated singularities; and the residue theorem. Topics of current interest. (3)

CHANGE: MATH 656. THEORY OF FUNCTIONS OF COMPLEX VARIABLE II. Complex functions; mappings, integration theory, entire functions; topics of current interest. (3)

TO: MATH 656. THEORY OF FUNCTIONS OF COMPLEX VARIABLE II. Complex functions; Conformal mappings; integration theory, entire harmonic functions; topics of current interest and infinite products. (3)

CHANGE: MATH 661. NUMERICAL ANALYSIS I. Numerical linear algebra, error analysis, computation of eigenvalues, and eigenvectors, finite differences, techniques for ordinary and partial differential equations, stability and convergence analysis. (3)

TO: MATH 661. NUMERICAL ANALYSIS I. Numerical linear algebra; error analysis; computation of eigenvalues and eigenvectors; and finite differences. Techniques for ordinary and partial differential equations; stability and convergence analysis. (3)

CHANGE: MATH 662. NUMERICAL ANALYSIS II. Numerical linear algebra, error analysis, computation of eigenvalues, and eigenvectors, finite differences, techniques for ordinary and partial differential equations, stability and convergence analysis. (3)

TO: MATH 662. NUMERICAL ANALYSIS II. Numerical linear algebra, error analysis, computation of eigenvalues, and eigenvectors, finite differences; Techniques for ordinary and partial differential equations; and stability and convergence analysis. (3)

CHANGE: MATH 667. FUNCTIONAL ANALYSIS I. Linear spaces; operators and functionals. (3)

TO: MATH 667. FUNCTIONAL ANALYSIS I. Linear spaces; operators and functional Topological vector spaces (tvs); complete tvs; product and quotient tvs; separation theorems for convex sets; locally convex spaces; Krein-Milman theorem; linear operators; dual pairs and Mackey-Arens theorem; Alaoglu-Bourbaki theorem; and bornological and barreled spaces. (3)

CHANGE: MATH 668. FUNCTIONAL ANALYSIS II. Linear spaces; operators and functionals. (3)

TO: MATH 668. FUNCTIONAL ANALYSIS II. Linear spaces; operators and functional Topics in applied functional analysis . (3)

CHANGE: MATH 673. ADVANCED PROBABILITY I. Current topics in probability are treated at an advanced mathematical level. Measure theoretic foundations, infinitely divisible laws, stable laws, and multidimensional central limit theorem, strong laws, law of the integrated logarithm. (3)

TO: MATH 673. ADVANCED PROBABILITY I. Current topics in probability are treated at an advanced mathematical level; Measure theoretic foundations; infinitely divisible laws; and stable laws, and multidimensional central limit theorem, strong laws, law of the integrated logarithm. Corequisite: Math 654 (3)
CHANGE: MATH 674. ADVANCED PROBABILITY II. Current topics in probability are treated at an advanced mathematical level. Measure theoretic foundations, infinitely divisible laws, stable laws, and multidimensional central limit theorem, strong laws, law of the integrated logarithm. Prerequisite: Math 673. (3)

TO: MATH 674. ADVANCED PROBABILITY II. Current topics in probability are treated at an advanced mathematical level. Measure theoretic foundations, infinitely divisible laws, stable laws, and multidimensional central limit theorem, strong laws, and law of the integrated logarithm. Prerequisite: Math 673 with minimum grade of C. (3)

CHANGE: MATH 677. ADVANCED STOCHASTIC PROCESSES I. Special topics in the mathematical theory of stochastic processes. Separability, Martingales, stochastic integrals, the Wiener process, Gaussian processes, random walk, Ornstein-Uhlenbeck process, semi-group theory for diffusions. Prerequisite: Math 674 with minimum grade of C. (3)

TO: MATH 677. ADVANCED STOCHASTIC PROCESSES I. Special topics in the mathematical theory of stochastic processes; Separability; Martingales; stochastic integrals; and the Wiener process, Gaussian processes, random walk, Ornstein-Uhlenbeck process, semi-group theory for diffusions. Prerequisite: Math 674 with minimum grade of C. (3)

CHANGE: MATH 678. ADVANCED STOCHASTIC PROCESSES II. Special topics in the mathematical theory of stochastic processes. Separability, Martingales, stochastic integrals, the Wiener process, Gaussian process, random walk, Ornstein-Uhlenbeck process, semi-group theory for diffusions. Prerequisite: Math 674 with minimum grade of C. (3)

TO: MATH 678. ADVANCED STOCHASTIC PROCESSES II. Special topics in the mathematical theory of stochastic processes. Separability, Martingales, stochastic integrals, the Wiener process, Gaussian process, random walk, Ornstein-Uhlenbeck process, semi-group theory for diffusions. Prerequisite: Math 677 with minimum grade of C. (3)

CHANGE: MATH 679. STATISTICAL BIOINFORMATICS. The purpose of this course is to introduce students to bioinformatics—an interdisciplinary area of study that combines techniques and knowledge in mathematical, statistical, computational, and life sciences to understand the biological significance of genetic sequence data. Prerequisite: Math 575 with minimum grade of C. (3)

TO: MATH 679. STATISTICAL BIOINFORMATICS. The purpose of this course is to introduce students to bioinformatics, an interdisciplinary area of study that combines techniques and knowledge in mathematical, statistical, computational, and life sciences in order to understand the biological significance of genetic sequence data. Prerequisite: Math 575 with minimum grade of C. (3)

CHANGE: MATH 681. GRAPH THEORY I. Topics in graph theory, including trees, connectivity, coverings, planarity, colorability, directed graphs. (3)

TO: MATH 681. GRAPH THEORY I. Primarily topics in graph—Matroid theory, including duality, minors, trees, connectivity, graphic matroids, representable matroids, and matroid structure. Connections between the class of matroids with the classes of graphs and projective geometries are also studied, coverings, planarity, colorability, directed graphs. (3)

CHANGE: MATH 682. GRAPH THEORY II. Topics in graph theory, including trees, connectivity, coverings, planarity, colorability, directed graphs. (3)

TO: MATH 682. GRAPH THEORY II. Topics in graph theory, including trees, connectivity, matchings, paths, cycles, coverings, planarity, graph colorings, networks and colorability, directed graphs. Extremal graph structure, applications, and algorithms will also be studied. (3)
MILITARY SCIENCE AND LEADERSHIP

CHANGE: MSL 105. BASIC TRAINING. Credit for successful completion of basic training in the U.S. Army. Z grade. (4)

TO: MSL 105. BASIC TRAINING. Credit for successful completion of Basic Training, LDAC, or Officer Candidates School training in the U.S. Army. Z grade. (4)

MODERN LANGUAGES

ADD: ARAB 215. ARABIC PRACTICUM I. This course provides students with communicative opportunities in the Middle East. Prerequisite: ARAB 212. (5)

ADD: ARAB 311. INTENSIVE ARABIC V. Continuation of ARAB 212 to develop proficiency in Arabic with cultural information about the Arabic-speaking world. Prerequisite: ARAB 212. (5)

ADD: ARAB 312. INTENSIVE ARABIC VI. Continuation of ARAB 311 to develop proficiency in Arabic with cultural information about the Arabic-speaking world. Prerequisite: ARAB 311. (5)

ADD: ARAB 315. ARABIC PRACTICUM II. This course is a practicum in Middle Eastern society and culture through the use of Arabic language in the Middle East. Prerequisite: ARAB 312. (5)


ADD: CHIN 598. CHINESE CAPSTONE INTERSHIP. Students from the Chinese Flagship Program complete a professional internship for a Chinese company working in China. Prerequisite: Approval of the Director of the Chinese Flagship Program. (1-6). Z-graded.

ADD: TESL 552. INTERCULTURAL COMMUNICATION. This course introduces students to understanding cross-cultural communication. Students will analyze how people talk while participating in a conversation. (3).

ADD: MLLL 375. INTRODUCTION TO MEDIEVAL STUDIES. This course introduces students to medieval culture and to seminal works of medieval literature. (Same as ENGL 375). (3)

NAVAL SCIENCE

CHANGE: NSC 105. BASIC TRAINING. Credit for successful completion of basic training in the U.S. Navy or the U.S. Marine Corps. Z grade. (4)

TO: NSC 105. BASIC TRAINING. Credit for successful completion of basic Recruit Training or Officer Candidates School training in the U.S. Navy or the U.S. Marine Corps. Z grade. (4)
II. OTHER CATALOG CHANGES

On page 45-46 of the Fall 2009 Undergraduate Catalog:

CHANGE: Advanced Placement (AP). Students who participate in the College Entrance Examination Board Advanced Placement Program offered through their high school, and who earn appropriate scores on the AP examination, will receive the following academic credit.

<table>
<thead>
<tr>
<th>Examination</th>
<th>AP Score</th>
<th>UM Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>French Language</td>
<td>4-5</td>
<td>FR 101, 102</td>
<td>6</td>
</tr>
<tr>
<td>German Language</td>
<td>4-5</td>
<td>GERM 101, 102</td>
<td>6</td>
</tr>
<tr>
<td>Spanish Language</td>
<td>4-5</td>
<td>SPAN 101, 102</td>
<td>6</td>
</tr>
</tbody>
</table>

TO:

<table>
<thead>
<tr>
<th>Examination</th>
<th>AP Score</th>
<th>UM Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinese Language and Culture</td>
<td>3</td>
<td>CHIN 102</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4-5</td>
<td>CHIN 201, 202</td>
<td>6</td>
</tr>
<tr>
<td>French Language</td>
<td>3</td>
<td>FR 102</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4-5</td>
<td>FR 101, 102</td>
<td>6</td>
</tr>
<tr>
<td>German Language</td>
<td>3</td>
<td>GERM 102</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4-5</td>
<td>GERM 101, 102</td>
<td>6</td>
</tr>
<tr>
<td>Japanese Language and Culture</td>
<td>3</td>
<td>JAPN 102</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4-5</td>
<td>JAPN 201, 202</td>
<td>6</td>
</tr>
<tr>
<td>Spanish Language</td>
<td>3</td>
<td>SPAN 102</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4-5</td>
<td>SPAN 101, 102</td>
<td>6</td>
</tr>
</tbody>
</table>

ENGLISH

On page 74 and page 234 of the Fall 2009 Undergraduate Catalog:

CHANGE: Six hours of English composition are prerequisites for all 200-level literature courses. Six hours of 200-level literature courses are prerequisites for all 300-level and above English courses.

TO: Six hours of English composition are prerequisites for all 200-level literature courses. Three six hours of 200-level literature courses are prerequisites for all 300-level and above English courses.

ENVIRONMENTAL STUDIES

CHANGE: Minor in Environmental Studies

Description: A minor in environmental studies is designed to introduce students to an interdisciplinary approach to environmental concerns, including: 1) a study of human/environmental interactions from the viewpoint of the social sciences; 2) a reflection on environmental themes in the arts and humanities; 3) the scientific foundations of environmental thought.
Course Requirements: The environmental studies minor consists of Envs 101, either Bisc 104 or Bisc 162, and 12 hours of approved electives. The approved electives must include a minimum of 3 hours in at least two of the three discipline categories: humanities, natural sciences, and social sciences.

Humanities
Engl 483 Renaissance Literature and the Environment
Engl 447 Animals in Literature
Engl 362 American Env. Lit. 1850-Present
Engl 475 Southern Env. Writing
G St 391 Women, Gender, and the Environment
Phil 345 Environmental Ethics

Natural Sciences
Bisc 525 Conservation and Restoration Ecology
Bisc 413 Conservation Biology
Bisc 320 Introductory Marine Biology
Bisc 345 Symbiosis
Bisc 318 Botany
Bisc 342 Plant Diversity
Bisc 329 Biology of Fishes
Bisc 334 Ornithology
Bisc 337 Introductory Entomology
Bisc 350 Mammalogy
Chem 104 Chemistry for Nonmajors or Chem 105 Chemistry for Majors
Phcl 347/547 Introduction to Environmental Toxicology
Phcl 381/581 Introduction to Toxicology

Social Sciences
Anth 330 Environmental Anthropology
Anth 331 American Indians and the Natural World
Anth 319 Environmental History of the South
PPL 381 Global Environmental Issues
Soc 411 Environment, Technology, and Society

TO: Minor in Environmental Studies

Description: A minor in environmental studies is designed to introduce students to an interdisciplinary approach to environmental concerns, including: 1) a study of human/environmental interactions from the viewpoint of the social sciences; 2) a reflection on environmental themes in the arts and humanities; 3) the scientific foundations of environmental thought.

Course Requirements: The environmental studies minor consists of Envs 101, either Bisc 104 or Bisc 162, and 12 hours of approved electives. The approved electives must include a minimum of 3 hours in at least two of the three discipline categories: humanities, natural sciences, and social sciences. Students who complete relevant internships, study abroad courses, and special topics courses will consult with the Environmental Studies Director prior to enrolment in the courses for approval and to determine the appropriate category (humanities, natural sciences, social sciences) for the course.

Humanities
Engl 483 Renaissance Literature and the Environment
Engl 447 Animals in Literature
Engl 362 American Env. Lit. 1850-Present
Engl 475 Southern Env. Writing
G St 391 Women, Gender, and the Environment
Phil 345 Environmental Ethics

Natural Sciences
Bisc 525 Conservation and Restoration Ecology
Bisc 413 Conservation Biology
Bisc 320 Introductory Marine Biology
Bisc 345 Symbiosis
Bisc 318 Botany
Bisc 342 Plant Diversity
Bisc 329 Biology of Fishes
Bisc 334 Ornithology
Bisc 337 Introductory Entomology
Bisc 350 Mammology
Bisc 321 Introduction to Aquatic Biology
Chem 104 Chemistry for Nonmajors or Chem 105 Chemistry for Majors
Geol 104 Environmental Geology - Hazards
Geol 105 Environmental Geology - Resources
Phcl 347/547 Introduction to Environmental Toxicology
Phcl 381/581 Introduction to Toxicology

Social Sciences
Anth 330 Environmental Anthropology
Anth 331 American Indians and the Natural World
Anth 319 Environmental History of the South
PPL 381 Global Environmental Issues
Soc 411 Environment, Technology, and Society

GEOLOGY

On page 76 of the Fall 2009 Undergraduate Catalog:
CHANGE: Course Requirements: A major in geology for the B.S. degree consists of at least 48 hours of geology and geological engineering courses, including GEOL 103, 221, 222, 303, 305, 314; GE 234, 413, and 437; either GE 503 or 577; either GEOL 505 or 550; either GEOL 309, 420, 500, or GE 513; and two additional GEOL/GE classes at the 400 level or above.

TO: Course Requirements: A major in geology for the B.S. degree consists of at least 48 hours of geology and geological engineering courses, including GEOL 103, 221, 222, 303, 305, 314; GE 234, 413, and 437; either GE 503 or 577; either GEOL 505 or 550; either GEOL 309, 420, 500, or GE 513; and two additional GEOL/GE classes at the 400 level or above. Under approved circumstances, at the discretion of the department chair, the combination of GEOL 101 and 102 may be substituted for GEOL 103.

MEDIEVAL STUDIES

ADD: MINOR IN MEDIEVAL STUDIES

Description: The MINOR IN MEDIEVAL STUDIES is an interdisciplinary course of study that covers the period from 476 to 1517. Students will be encouraged to take courses from a wide range of disciplines, which makes this minor well-suited to many majors. They will come to understand that “the Middle Ages” in fact includes a wide variety of cultures, artistic trends, literatures, languages, philosophies, and religious practices. In developing a deeper appreciation for the past, students will come to a better understanding of the foundation of our fast-paced, ever-changing present day world.

Course Requirements: The MINOR IN MEDIEVAL STUDIES consists of 18 semester hours, including HIS 354 or ENGL 375 or MLLL 375. Students must complete 15 hours at the 300-level or above from the approved list of courses below. The 18 semester hours must be taken in at least three different areas (e.g. ENGL, SPAN, GERM), with 15 hours in an area different than the student’s major. The same course may not satisfy requirements for both the major and the minor.
III. FOR INFORMATION PURPOSES ONLY

GEOLOGY

CHANGE: GEOL 101. PHYSICAL GEOLOGY. Classical introduction to Earth science and the physical and chemical processes that affect the Earth. Satisfies science requirement of core curriculum when taken in conjunction with Geol 111. Will not count for credit if Geol 104 or 105 is counted. Not applicable to major or minor programs in geology or geological engineering. (3)

TO: GEOL 101. PHYSICAL GEOLOGY. Classical introduction to Earth science and the physical and chemical processes that affect the Earth for non-majors. Satisfies laboratory-science requirements of core curriculum when taken in conjunction with Geol 111. Will not count for credit if Geol 104 or 105 is counted. Not applicable to major or minor programs in geology or geological engineering. (3)

CHANGE: GEOL 102. HISTORICAL GEOLOGY. Classical introduction to Earth science and the historical development of the Earth and its life. Satisfies science requirement of core curriculum when taken in conjunction with Geol 112. Not applicable to major program in geology or geological engineering. (3)

TO: GEOL 102. HISTORICAL GEOLOGY. Classical introduction to Earth science and the historical development of the Earth and its life for non-majors. Satisfies laboratory-science requirements of core curriculum when taken in conjunction with Geol 112. Not applicable to major program in geology or geological engineering. (3)
CHANGE: GEOL 104. ENVIRONMENTAL GEOLOGY I. An introduction to the relationship between humans and the
geological environment, including geologic hazards, natural resources, and waste disposal problems. Will not count for
credit if Geol 101 is counted. Nat applicable to major programs in geology and geological engineering. (3)

TO: GEOL 104. ENVIRONMENTAL GEOLOGY I - HAZARDS. An introduction to the relationship between humans
and the geological environment, with a focus on natural and human induced hazards, including landslides, volcanic
eruptions, earthquakes, tsunamis, subsidence, sea-level rise, and pollution; for non-majors, including geologic hazards,
natural resources, and waste disposal problems. Satisfies laboratory-science requirements of core curriculum when taken
in conjunction with Geol 114. Will not count for credit if Geol 101 is counted. Not applicable to major programs in
goology and geological engineering. (3)

CHANGE: GEOL 105. ENVIRONMENTAL GEOLOGY II. An introduction to the relationship between humans and the
geological environment, including geologic hazards, natural resources, and waste disposal problems. Will not count for
credit if Geol 101 is counted. Not applicable to major programs in geology and geological engineering. Prerequisite: Geol
104. (3)

TO: GEOL 105. ENVIRONMENTAL GEOLOGY II - RESOURCES. An introduction to the relationship between humans
and the geological environment, with a focus on natural resources, waste disposal, and climate change; for non-
majors, including geologic hazards, natural resources, and waste disposal problems. Will not count for credit if Geol 101
is counted. Not applicable to major programs in geology and geological engineering. Prerequisite: Geol 104. Satisfies
laboratory-science requirements of core curriculum when taken in conjunction with Geol 115. (3)

CHANGE: GEOL 111. PHYSICAL GEOLOGY LABORATORY. Laboratory exercises that introduce earth science and
the physical and chemical processes that affect the Earth (Not applicable to major programs in geology or geological
engineering). Corequisite: Geol 101. (1)

TO: GEOL 111. PHYSICAL GEOLOGY LABORATORY. Laboratory exercises that introduce earth science and the
physical and chemical processes that affect the Earth; for non-majors. (Not applicable to major programs in geology or
goological engineering). Corequisite: Geol 101. (1)

CHANGE: GEOL 112. HISTORICAL GEOLOGY LABORATORY. Laboratory exercises that introduce earth science
and the historical development of the Earth and its life. (Not applicable to major programs in geology or geological
engineering). Corequisite: Geol 102 (1)

TO: GEOL 112. HISTORICAL GEOLOGY LABORATORY. Laboratory exercises that introduce earth science and the
historical development of the Earth and its life; for non-majors. (Not applicable to major programs in geology or
goological engineering). Corequisite: Geol 102 (1)

CHANGE: GEOL 114. ENVIRONMENTAL GEOLOGY LABORATORY I. Laboratory exercises that introduce the
relationship between humans and the geologic environment, including geologic hazards, natural resources, and waste
disposal problems (Not applicable to major programs in geology or geological engineering). (1)

TO: GEOL 114. ENVIRONMENTAL GEOLOGY - HAZARDS LABORATORY I. Laboratory exercises that introduce
the relationship between humans and the geologic environment with a focus on natural hazards; for non-majors, including
geologic hazards, natural resources, and waste disposal problems (Not applicable to major programs in geology or
goological engineering). Corequisite: Geol 104. (1)

CHANGE: GEOL 115. ENVIRONMENTAL GEOLOGY LABORATORY II. Additional laboratory exercises that
introduce the relationship between humans and the geologic environment, including geologic hazards, natural resources,
and waste disposal problems. (Not applicable to major programs in geology or geological engineering). Corequisite: Geol
105 (1)
TO: GEOL 115. ENVIRONMENTAL GEOLOGY - RESOURCES LABORATORY II. Additional laboratory exercises that introduce the relationship between humans and the geologic environment with a focus on natural hazards; for non-majors, including geologic hazards, natural resources, and waste disposal problems. (Not applicable to major programs in geology or geological engineering). Corequisite: Geol 105 (1).

IV. OTHER BUSINESS

1. Associate Dean Reynolds stated that the Provost’s office is putting together a task force to look at the issue of students being reported for multiple academic discipline violations.

2. Assistant to the Dean Stephen Monroe said that there was a university compliance rate of 82% for submitting textbook orders.

3. Chancellor Daniel Jones’ inauguration will be Friday, April 9, 2010.

4. Dean Hopkins mentioned that he is chairing a committee to consider his proposal to change the minimum GPA freshmen probation was changed from 1.6 to 2.0.

5. Dean Hopkins announced the retirement of Dr. Ronald Vernon from his position as Associate Dean at the end of June.