The following course additions, changes, and deletions were approved by the committee.

I. COURSE ADDITIONS, CHANGES, AND DELETIONS

CHEMISTRY AND BIOCHEMISTRY

CHANGE: CHEM 102. CHEMICAL CONCEPTS LABORATORY.¹ Corequisite: CHEM 101. (1).

TO: CHEM 102. CHEMICAL CONCEPTS LABORATORY.² Students who withdraw from CHEM 101 must withdraw from CHEM 102. Corequisite: CHEM 101. (1).

CHANGE: CHEM 103, 104 SURVEY OF CHEMISTRY I, II. Overview of chemistry for the nonmajor. CHEM 103 is a prerequisite for CHEM 104. When taken in conjunction with CHEM 113, 114, satisfies science requirements of the core curriculum. (3, 3). May not be used for major or minor credit.

TO: CHEM 103. SURVEY OF CHEMISTRY I. Overview of chemistry for the nonmajor. CHEM 103 is a prerequisite for CHEM 104. When taken in conjunction with CHEM 113, 114, satisfies science requirements of the core curriculum. This course satisfies laboratory science requirements of the core curriculum when taken in conjunction with CHEM 113. May not be used for major or minor credit. (3).

TO: CHEM 104. SURVEY OF CHEMISTRY II. Continuation of CHEM 103. CHEM 103 is a prerequisite for CHEM 104. When taken in conjunction with CHEM 113, 114, satisfies science requirements of the core curriculum. This course satisfies laboratory science requirements of the core curriculum when taken in conjunction with CHEM 114. May not be used for major or minor credit. Prerequisite: CHEM 103. (3).

CHANGE: CHEM 105, 106. GENERAL CHEMISTRY I, II. Lecture part of the standard basic course for a major or minor program in chemistry. Prerequisite: minimum ACT mathematics score of 22 (SAT 510) or B minimum in MATH 121 or 125. CHEM 105 is a prerequisite for CHEM 106. (3,3).

TO: CHEM 105. GENERAL CHEMISTRY I. Lecture part of the standard basic course for a major or minor program in chemistry. Atomic and molecular structure, stoichiometry, solutions, physical properties of gases, liquids and solids, chemical bonding, kinetics, thermodynamics and equilibrium, acid-base chemistry and the descriptive chemistry of the elements. Prerequisite: minimum ACT mathematics score of 22 (SAT 510) or a B minimum grade of B in MATH 121 or 125. (3).

TO: CHEM 106. GENERAL CHEMISTRY II. Continuation of CHEM 105. Prerequisite: CHEM 105.(3).
CHANGE: **CHEM 105H, 106H. HONORS GENERAL CHEMISTRY I, II.** Lecture part of the standard basic course for a major or minor program in chemistry. Reserved for honors students. Must be taken concurrently with CHEM 107H, 108H. CHEM 105H is a prerequisite for CHEM 106H. (3, 3).

TO: **CHEM 105H. GENERAL CHEMISTRY I.** Lecture part of the standard basic course for a major or minor program in chemistry. Reserved for honors students. Must be taken concurrently with CHEM 107H, 108H. CHEM 105H is a prerequisite for CHEM 106H. Atomic and molecular structure, stoichiometry, solutions, physical properties of gases, liquids and solids, chemical bonding, kinetics, thermodynamics and equilibrium, acid-base chemistry and the descriptive chemistry of the elements. This course is reserved for students in the Sally McDonnell Barksdale Honors College. Prerequisite: minimum ACT mathematics score of 22 (SAT 510) or a minimum grade of B in MATH 121 or 125. Corequisite: 107H. (3).

TO: **CHEM 106H. GENERAL CHEMISTRY II.** Continuation of CHEM 105H. This course is reserved for students in the Sally McDonnell Barksdale Honors College. Prerequisite: CHEM 105H. Corequisite: 108H (3).

TO: **CHEM 107H. HONORS RECITATION I.** Amplification of the principles topics covered in CHEM 105H. Must be taken concurrently with CHEM 105H. Corequisite: 105H. (1).

CHANGE: **CHEM 113, 114. SURVEY OF CHEMISTRY LABORATORY I, II.** Corequisite: CHEM 103. (3 lab hours). (1).

TO: **CHEM 113. SURVEY OF CHEMISTRY LABORATORY I.** Students who withdraw from CHEM 103 or CHEM 201 must withdraw from CHEM 113. Corequisite: CHEM 103 or 201. (3 lab hours). (1).

TO: **CHEM 114. SURVEY OF CHEMISTRY LABORATORY II.** Students who withdraw from CHEM 104 or CHEM 202 must withdraw from CHEM 114. Corequisite: CHEM 104 or 202. (3 lab hours). (1).

CHANGE: **CHEM 115, 116. GENERAL CHEMISTRY LABORATORY I, II.** Corequisite: CHEM 105, 106. (1, 1).

TO: **CHEM 115. GENERAL CHEMISTRY LABORATORY I.** Students who withdraw from CHEM 105 must withdraw from CHEM 115. Corequisite: CHEM 105. (1).

TO: **CHEM 116. GENERAL CHEMISTRY LABORATORY II.** Students who withdraw from CHEM 106 must withdraw from CHEM 116. Corequisite: CHEM 106. (1).

CHANGE: **CHEM 221, 222. ELEMENTARY ORGANIC CHEMISTRY I, II.** Structures and spectroscopy of organic compounds; organic reactions and their mechanisms. Prerequisite: CHEM 106. CHEM 221 is a prerequisite for CHEM 222. (3, 3).

TO: **CHEM 221. ELEMENTARY ORGANIC CHEMISTRY I.** Structures and spectroscopy of organic compounds; organic reactions and their mechanisms. Prerequisite: CHEM 106. (3).

TO: **CHEM 222. ELEMENTARY ORGANIC CHEMISTRY II.** Continuation of CHEM 221. Prerequisite: CHEM 221. (3).
CHANGE: **CHEM 225, 226. ELEMENTARY ORGANIC CHEMISTRY LABORATORY I, II.** Investigation of organic functional groups; preparation and purification techniques. Prerequisite: CHEM 116. Corequisite: CHEM 221, 222. (1, 1).

TO: **CHEM 225. ELEMENTARY ORGANIC CHEMISTRY LABORATORY I.** Investigation of organic functional groups; preparation and purification techniques. Students who withdraw from CHEM 221 must withdraw from CHEM 225. Prerequisite: CHEM 116. Corequisite: CHEM 221. (1).

TO: **CHEM 226. ELEMENTARY ORGANIC CHEMISTRY LABORATORY II.** Continuation of CHEM 225. Students who withdraw from CHEM 222 must withdraw from CHEM 226. Prerequisite: CHEM 225. Corequisite: CHEM 222. (1).

CHANGE: **CHEM 314. QUANTITATIVE ANALYSIS.** Introduction to the theory and practice of chemical analysis, including acid-base, oxidation-reduction, and precipitation titrations; spectrophotometry; ion-selective electrodes; and chromatography. Pre-requisites: CHEM 222. (2 lecture, 6 lab hours). (4).

TO: **CHEM 314. QUANTITATIVE ANALYSIS.** Introduction to the theory and practice of chemical analysis, including acid-base, oxidation-reduction, and precipitation titrations; spectrophotometry; ion-selective electrodes; and chromatography. Prerequisites: CHEM 222 and 226. (2 lecture, 6 lab hours). (4).

CHANGE: **CHEM 331, 332. PHYSICAL CHEMISTRY I, II.** Professional course. Quantum chemistry and molecular orbital theory, thermodynamics and statistical mechanics, kinetics and reaction dynamics, spectroscopy. Prerequisites: CHEM 222, PHYS 212 or 214; MATH 264. (3, 3).

TO: **CHEM 331. PHYSICAL CHEMISTRY I.** Professional course. Quantum chemistry and molecular orbital theory, thermodynamics and statistical mechanics, kinetics and reaction dynamics, spectroscopy. Thermodynamics and statistical mechanics, kinetics and reaction dynamics. Prerequisites: CHEM 222, 226, MATH 262 and either PHYS 212 or 214. (3).

TO: **CHEM 332. PHYSICAL CHEMISTRY II.** Professional course. Quantum chemistry and molecular orbital theory, thermodynamics and statistical mechanics, kinetics and reaction dynamics, spectroscopy. Quantum chemistry and molecular orbital theory; spectroscopy. Prerequisites: CHEM 331 and MATH 264. (3).

CHANGE: **CHEM 337, 338. PHYSICAL CHEMISTRY LABORATORY I, II.** Corequisite: CHEM 331, 332 (1,1).

TO: **CHEM 337. PHYSICAL CHEMISTRY LABORATORY I.** Laboratory course to accompany CHEM 332. Corequisite: CHEM 331, 332 (1).

DELETE: **CHEM 338. PHYSICAL CHEMISTRY LABORATORY II.** Corequisite: CHEM 332. (1).

CHANGE: **CHEM 371. BIOCHEMICAL CONCEPTS.** Prerequisite: CHEM 121 or 221 or 321. (3). May not be used for major or minor credit.

TO: **CHEM 371-271. BIOCHEMICAL CONCEPTS.** Survey of the chemistry of biochemical molecules and metabolism. May not be used for major or minor credit. Prerequisite: CHEM 121 or 221 or 321. (3).

CHANGE: **CHEM 381, 382, 383. CHEMISTRY FOR TEACHERS I, II, III.** Analysis of the concepts and models of chemistry with emphasis on computational skills for school teachers. Appropriate for persons seeking certification as chemistry or science teachers. May not be counted toward a degree in any of the sciences. (3 lecture, 2 lab hours each). (4, 4, 4).
TO: CHEM 381. CHEMISTRY FOR TEACHERS I. Analysis of the concepts and models of chemistry with emphasis on computational skills for school teachers. Appropriate for persons seeking certification as chemistry or science teachers. May not be counted toward a degree in any of the sciences. (3 lecture, 2 lab hours each). Prerequisite: departmental approval. (4).

TO: CHEM 382. CHEMISTRY FOR TEACHERS II. Analysis of the concepts and models of chemistry with emphasis on computational skills for school teachers. Appropriate for persons seeking certification as chemistry or science teachers. May not be counted toward a degree in any of the sciences. (3 lecture, 2 lab hours each). Prerequisites: CHEM 381 and departmental approval. (4).

TO: CHEM 383. CHEMISTRY FOR TEACHERS III. Analysis of the concepts and models of chemistry with emphasis on computational skills for school teachers. Appropriate for persons seeking certification as chemistry or science teachers. May not be counted toward a degree in any of the sciences. (3 lecture, 2 lab hours each). Prerequisites: CHEM 382 and departmental approval. (4).

CHANGE: CHEM 401. INORGANIC CHEMICAL PRINCIPLES. Application of physical chemical principles to the study of inorganic systems. Prerequisite: CHEM 331 (3).

TO: CHEM 401. INORGANIC CHEMICAL PRINCIPLES. Application of physical chemical principles to the study of inorganic systems. Prerequisite: CHEM 331-332 (3).

CHANGE: CHEM 402. INORGANIC CHEMISTRY LABORATORY. Synthesis, identification, and study of physical and chemical properties of selected inorganic compounds. Corequisite: CHEM 401. (1).

TO: CHEM 402. INORGANIC CHEMISTRY LABORATORY. Synthesis, identification, and study of physical and chemical properties of selected inorganic compounds. Students who withdraw from CHEM 401 must withdraw from CHEM 402. Corequisite: CHEM 401. (1).

CHANGE: CHEM 415. COMPUTER METHODS IN CHEMISTRY. Interfacing of computers to chemical instrumentation; data collection and analysis using computer methods. Prerequisite: CHEM 222. (3).

TO: CHEM 415. COMPUTER METHODS IN CHEMISTRY. Interfacing of computers to chemical instrumentation; data collection and analysis using computer methods. Prerequisites: CHEM 222, 314, MATH 262, and either PHYS 212 or 214. (3).

CHANGE: CHEM 421H, 422H. RECITATION IN ORGANIC CHEMISTRY I, II. Expansion of material from elementary courses and transmission of basic concepts to elementary students. Prerequisite: CHEM 222. (3).

TO: CHEM 421H. RECITATION IN ORGANIC CHEMISTRY I. Expansion of material from elementary chemistry courses and transmission of basic concepts to elementary organic chemistry students. Prerequisites: CHEM 222 and departmental approval. (3).

TO: CHEM 422H. RECITATION IN ORGANIC CHEMISTRY II. Continuation of CHEM 421H. Prerequisites: CHEM 222 and departmental approval. (3).

CHANGE: CHEM 459. FORENSIC SCIENCE INTERNSHIP. (6) (Z grade).

TO: CHEM 459. FORENSIC SCIENCE INTERNSHIP. Internship at a local, state, or federal crime laboratory. Prerequisites: Minimum overall GPA of 2.50; Junior standing; departmental approval (6) (Z grade).
CHANGE: **CHEM 471, 473. BIOCHEMISTRY I, II.** Chemistry of biological macromolecules and their control of the processes. Prerequisites: CHEM 222, 226. (3,3).

TO: **CHEM 471. BIOCHEMISTRY I.** Chemistry of biological macromolecules and their control of the processes. Chemistry of biological macromolecules including proteins, carbohydrates, lipids and nucleic acids. Special topics in ligand binding, kinetics and noncovalent forces. Prerequisites: CHEM 222, 226. (3).

TO: **CHEM 473. BIOCHEMISTRY II.** Chemistry of biological macromolecules and their control of the processes. Intermediary metabolism, including catabolic and anabolic processes involving carbohydrates, lipids, proteins, and nucleic acids. Prerequisites: CHEM 222, 226. (3).

CHANGE: **CHEM 501, 502. ADVANCED INORGANIC CHEMISTRY I, II.** Atomic and molecular structure; chemical bonds; solvent systems; reactions of the elements and their compounds. Prerequisites: Chemistry 222, 226, and 331 (3).

TO: **CHEM 501. ADVANCED INORGANIC CHEMISTRY I.** Atomic and molecular structure, symmetry, acid-base chemistry, the crystalline solid state, coordination chemistry; including structure, bonding, electronic spectra and reactions; main group chemistry; organometallic chemistry; and bioinorganic chemistry. Prerequisites: Chemistry 222, 226, and 331 (3).

TO: **CHEM 502. ADVANCED INORGANIC CHEMISTRY II.** Atomic and molecular structure; chemical bonds; solvent systems; reactions of the elements and their compounds. Continuation of CHEM 501. Prerequisites: Chemistry 222, 226, and 331 (3).

CHANGE: **CHEM 503. INORGANIC TECHNIQUES.** Survey of some of the most important laboratory techniques for the inorganic chemist, including vacuum line design, construction, and operation. (6 lab hours). (3).

TO: **CHEM 503. INORGANIC TECHNIQUES.** Survey of some of the most important laboratory techniques for the inorganic chemist, including vacuum line design, construction, and operation. (6 lab hours). (3).

DELETE: **CHEM 505. RADIATION CHEMISTRY.**

DELETE: **CHEM 507. NUCLEAR CHEMISTRY.**

CHANGE: **CHEM 512. ADVANCED INSTRUMENTAL ANALYSIS.** Theoretical and experimental treatment of chromatography, Fourier-transform NMR, mass spectrometry, and electrical techniques. Prerequisite: CHEM 469 (2 lecture, 3 lab hours). (3).

TO: **CHEM 512. ADVANCED INSTRUMENTAL ANALYSIS.** Theoretical and experimental treatment of gas and liquid chromatography, Fourier-transform NMR spectroscopy, and mass spectrometry, and electrical techniques. Prerequisite: CHEM 469 or graduate standing (2 lecture, 3 lab hours). (3).

CHANGE: **CHEM 513. PRINCIPLES OF ANALYTICAL CHEMISTRY.** Theoretical and mathematical applications of principles of equilibria. Prerequisite: departmental approval. (3).

TO: **CHEM 513. PRINCIPLES OF ANALYTICAL CHEMISTRY.** A survey of the basic principles of analytical techniques and instrumentation. Theoretical and mathematical applications of principles of equilibria. Prerequisite: departmental approval. (3)
CHANGE: **CHEM 514. FUNDAMENTALS OF ELECTROCHEMISTRY.** Introduction to the theory and principles of electrochemistry, including modern electroanalytical techniques. (3)

TO: **CHEM 514. FUNDAMENTALS OF ELECTROCHEMISTRY.** Introduction to the theory and principles of electrochemistry, including modern electroanalytical techniques and microelectrodes. Prerequisites: CHEM 469 or graduate standing (3).

CHANGE: **CHEM 515. SELECTED TOPICS IN ANALYTICAL CHEMISTRY.** (3).

TO: **CHEM 515-615. SELECTED TOPICS IN ANALYTICAL CHEMISTRY.** May be repeated once for credit if topics are different. Prerequisite: departmental approval. (3).

CHANGE: **CHEM 517, 518. RESEARCH METHODOLOGY IN ANALYTICAL CHEMISTRY I, II.** Modern techniques and methods of research in analytical chemistry. (6 lab hours). (3, 3).

TO: **CHEM 517-617. RESEARCH METHODOLOGY IN ANALYTICAL CHEMISTRY I.** Modern techniques and methods of research in analytical chemistry. (6 lab hours). (3).

TO: **CHEM 518-618. RESEARCH METHODOLOGY IN ANALYTICAL CHEMISTRY II.** Continuation of CHEM 617. (6 lab hours). (3).

CHANGE: **CHEM 519. CHEMICAL SEPARATIONS.** Theoretical and mathematical treatment of chromatography and other separation techniques. Prerequisite: CHEM 469. (3).

TO: **CHEM 519. CHEMICAL SEPARATIONS.** Theoretical and mathematical treatment of chromatography and other separation techniques. Prerequisite: CHEM 469 or graduate standing. (3).

CHANGE: **CHEM 522. ORGANIC TECHNIQUES.** Important research techniques in organic chemistry and preparation of selected materials in their use. (3)

TO: **CHEM 522-622. ORGANIC TECHNIQUES.** Important research techniques in organic chemistry and preparation of selected materials in their use. (3)

CHANGE: **CHEM 524. INTERMEDIATE ORGANIC CHEMISTRY.** Integration of the basic principles of organic chemistry with physical chemical principles. Prerequisite: departmental approval. (3)

TO: **CHEM 524. INTERMEDIATE PRINCIPLES OF ORGANIC CHEMISTRY.** A survey of the basic principles of organic chemistry with physical chemical principles. Prerequisite: departmental approval. (3)

CHANGE: **CHEM 525. SELECTED TOPICS IN ORGANIC CHEMISTRY.** Prerequisite: 528 or consent of instructor. (3).

TO: **CHEM 525-625. SELECTED TOPICS IN ORGANIC CHEMISTRY.** May be repeated once for credit if topics are different. Prerequisite: departmental approval. Prerequisite: 528 or consent of instructor. (3).

CHANGE: **CHEM 527. ADVANCED ORGANIC CHEMISTRY. STRUCTURE AND MECHANISM.** Resonance and molecular orbital theory, linear free energy relations, and reaction mechanisms. Prerequisites: CHEM 222, 226, and 331. (3).
TO: CHEM 527. ADVANCED ORGANIC CHEMISTRY, STRUCTURE AND MECHANISM. Resonance and molecular orbital theory, linear free energy relations, and reaction mechanisms. Prerequisites: CHEM 222, 226, and 331 or graduate standing (3).

CHANGE: CHEM 528. ADVANCED ORGANIC CHEMISTRY, MECHANISM AND SYNTHESIS. Conformational analysis, electron-deficient arrangements, carbanion chemistry, photochemistry, synthetic reactions. Prerequisites: CHEM 222, 226, and 331 (3).

TO: CHEM 528. ADVANCED ORGANIC CHEMISTRY, MECHANISM AND SYNTHESIS. Conformational analysis, electron-deficient arrangements, carbanion chemistry, photochemistry, synthetic reactions. Prerequisites: CHEM 222, 226, and 331 or graduate standing. (3).

CHANGE: CHEM 529. STEREOCHEMISTRY. Configurational and conformational analysis of molecules; the steric course of organic chemical reactions. Prerequisites: CHEM 222, 226, and 331 (3).

TO: CHANGE: CHEM 529. STEREOCHEMISTRY. Configurational and conformational analysis of molecules; the steric course of organic chemical reactions. Prerequisites: CHEM 222, 226, and 331 or graduate standing. (3).

CHANGE: CHEM 530. ADVANCED ORGANIC SYNTHESIS. A study of the literature, reactions, and planning methods which are used in modern organic synthesis. Prerequisites: CHEM 222, 226, and 331 (3).

TO: CHEM 530. ADVANCED ORGANIC SYNTHESIS. A study of the literature, reactions, and planning methods which are used in modern organic synthesis. Prerequisites: CHEM 222, 226, and 331 or graduate standing. (3).

CHANGE: CHEM 531. ADVANCED PHYSICAL CHEMISTRY, QUANTUM CHEMISTRY. Elementary quantum chemistry; solution of the Schrodinger equation for simple chemical systems; molecular orbital theory. Prerequisites: CHEM 332 or 538. (3)

TO: CHEM 531. ADVANCED PHYSICAL CHEMISTRY, QUANTUM CHEMISTRY. Elementary quantum chemistry; solution of the Schrodinger equation for simple chemical systems; molecular orbital theory. Prerequisites: CHEM 332 or 538 graduate standing (3).

CHANGE: CHEM 532. ADVANCED PHYSICAL CHEMISTRY, CHEMICAL THERMODYNAMICS. Rigorous discussion of irreversible and equilibrium thermodynamics and application to various chemical problems. Prerequisites: CHEM 332 or 538. (3).

TO: CHEM 532. ADVANCED PHYSICAL CHEMISTRY, CHEMICAL THERMODYNAMICS. Rigorous discussion of irreversible and equilibrium thermodynamics and application to various chemical problems. Prerequisites: CHEM 332 or 538 graduate standing (3).

CHANGE: CHEM 533. **SELECTED TOPICS IN PHYSICAL CHEMISTRY. Prerequisite: CHEM 536. (3).

TO: CHEM 533-633. SELECTED TOPICS IN PHYSICAL CHEMISTRY. May be repeated once for credit if topics are different. Prerequisite: CHEM 536 departmental approval. (3).

CHANGE: CHEM 535. INTERMEDIATE PHYSICAL CHEMISTRY I. Overview of principles in physical chemistry. Thermodynamics, kinetics, quantum mechanics, spectroscopy, statistical mechanics. Prerequisite: MATH 262, CHEM 334 or departmental approval. (3).
TO: CHEM 535. INTERMEDIATE PRINCIPLES OF PHYSICAL CHEMISTRY I. A survey overview of the principles in physical chemistry. Thermodynamics, kinetics, quantum mechanics, spectroscopy, statistical mechanics. Prerequisite: MATH 262, CHEM 334 or departmental approval. (3).

CHANGE: CHEM 536. ADVANCED PHYSICAL CHEMISTRY, REACTION DYNAMICS. Kinetic theory; molecular reaction dynamics; theory of liquids and solutions. Prerequisite: CHEM 332 or 538. (3).

TO: CHEM 536. ADVANCED PHYSICAL CHEMISTRY, REACTION DYNAMICS. Kinetic theory; molecular reaction dynamics; theory of liquids and solutions; transition state theory. Prerequisite: CHEM 332 or 538 or graduate standing. (3).

CHANGE: CHEM 538. INTERMEDIATE PHYSICAL CHEMISTRY II. Continuation of an overview of principles in physical chemistry. Thermodynamics, kinetics, quantum mechanics, spectroscopy, and statistical mechanics. Prerequisite: CHEM 535. (3).

TO: CHEM 538. INTERMEDIATE PRINCIPLES OF PHYSICAL CHEMISTRY II. Continuation of an overview of the principles in physical chemistry. Thermodynamics, kinetics, quantum mechanics, spectroscopy, and statistical mechanics. Prerequisite: minimum grade of B in CHEM 535 and departmental approval. (3).

CHEM 541. **SELECTED TOPICS IN INORGANIC CHEMISTRY.** Prerequisite: CHEM 502. (3).

CHEM 541-641. SELECTED TOPICS IN INORGANIC CHEMISTRY. May be repeated once for credit if topics are different. Prerequisite: CHEM 502, departmental approval. (3).

CHANGE: CHEM 544. CHEMICAL APPLICATIONS OF GROUP THEORY. Introduction to the principles of symmetry and group theory and their application to the description of molecular structure in terms of the chemical bonding models (VB, MO, LF) and spectral properties (magnetic, vibrational, and electronic) Prerequisites: CHEM 222, 226, and 331. (3).

TO: CHEM 544. CHEMICAL APPLICATIONS OF GROUP THEORY. Introduction to the principles of symmetry and group theory and their application to the description of molecular structure in terms of the chemical bonding models (VB, MO, LF) and spectral properties (magnetic, vibrational, and electronic) Prerequisites: CHEM 222, 226, and 331 or graduate standing. (3).

CHANGE: CHEM 545. CHEMICAL LITERATURE. Introduction to and practice in the use of chemical abstracts, journals, and other library reference materials. (3). (Z grade).

TO: CHEM 545. CHEMICAL LITERATURE. Introduction to and practice in the use of chemical abstracts, journals, and other library reference materials. Prerequisite: departmental approval. (3). (Z grade).

CHANGE: CHEM 546, 547. CHEMISTRY FOR HIGH SCHOOL SCIENCE TEACHERS I, II. A review of the basic principles of chemistry and an overview of new, technology, instructional materials, and methods used for teaching chemistry at the high school level. Appropriate for high school teachers seeking certificate renewal or supplemental endorsement. Prerequisite: CHEM 106. (May not be counted toward a degree in the sciences. May be repeated once for credit.) (3,3).

TO: CHEM 546. CHEMISTRY FOR HIGH SCHOOL SCIENCE TEACHERS I. A review of the basic principles of chemistry and an overview of new, technology, instructional materials, and methods used for teaching chemistry at the high school level. Appropriate for high school teachers seeking certificate renewal or supplemental endorsement. May
not be counted toward a degree in the sciences. May be repeated once for credit. Prerequisite: CHEM 106 departmental approval (3).

TO: CHEM 547. CHEMISTRY FOR HIGH SCHOOL SCIENCE TEACHERS II. A review of the basic principles of chemistry and an overview of new, technology, instructional materials, and methods used for teaching chemistry at the high school level. Appropriate for high school teachers seeking certificate renewal or supplemental endorsement. May not be counted toward a degree in the sciences. May be repeated once for credit. Prerequisite: CHEM 106 departmental approval (3).

CHANGE: CHEM 548. WORKSHOP FOR MIDDLE SCHOOL SCIENCE TEACHERS. Selection and application of instructional materials and methods for secondary school chemistry. (May not be counted toward a degree in the sciences.) (1-2).

TO: CHEM 548. WORKSHOP FOR MIDDLE SCHOOL SCIENCE TEACHERS. Selection and application of instructional materials and methods for secondary school chemistry. May not be counted toward a degree in the sciences. Prerequisite: departmental approval (1-2).

CHANGE: CHEM 550. SAFETY IN THE CHEMICAL LABORATORY. Assigned readings and demonstrations on the use and handling of hazardous chemicals and chemical apparatus. (3). (Z grade).

TO: CHEM 550. SAFETY IN THE CHEMICAL LABORATORY. Assigned readings and demonstrations on the use and handling of hazardous chemicals and chemical apparatus. Prerequisite: departmental approval. (3). (Z grade).

CHANGE: CHEM 563. APPLIED SPECTROSCOPY. Application of theoretical principles to the interpretation of various types of spectroscopy. Prerequisite: CHEM 469. (2 lecture, 3 lab hours). (3).

TO: CHEM 563. APPLIED SPECTROSCOPY. Application of theoretical principles to the interpretation of various types of spectroscopy. Prerequisites: CHEM 332 and 469; or graduate standing. (2 lecture, 3 lab hours). (3).

CHANGE: CHEM 570. BIOCHEMISTRY I. Overview of biochemical principles; chemistry of aqueous solutions, amino acids, carbohydrates, lipids, and nucleotides; structure and function of proteins, membranes, and nucleic acids; enzyme kinetics. Prerequisite: consent of instructor. (3).

TO: CHEM 570-571. BIOCHEMISTRY I. Overview of biochemical principles; chemistry of aqueous solutions, amino acids, carbohydrates, lipids, and nucleotides; structure and function of proteins, membranes, and nucleic acids; enzyme kinetics. Chemistry of biological macromolecules, including proteins, carbohydrates, lipids, and nucleic acids. Special topics in ligand binding, kinetics and noncovalent forces. An independent study project is required. Prerequisite: consent of instructor. (3).

CHANGE: CHEM 571. PHYSICAL BIOCHEMISTRY. Macromolecules: structure and function; thermodynamics and kinetics of confrontational transitions and macromolecule-ligand interactions. Prerequisite: CHEM 471 or 575 or consent of instructor. (3).

TO: CHEM 571-534. PHYSICAL BIOCHEMISTRY. Macromolecules: structure and function; thermodynamics and kinetics of confrontational transitions and macromolecule-ligand interactions. Prerequisite: CHEM 471 or 575 or consent of instructor. CHEM 471 and either 331 or 334; or graduate standing. (3).

CHANGE: CHEM 572. BIOCHEMISTRY II. Bioenergetics; anaerobic and aerobic metabolism; lipid and protein metabolism; regulatory mechanism; replication, transcription, and translation of genetic information; molecular physiology. Prerequisite: CHEM 570. (3).
TO: CHEM 572-673. BIOCHEMISTRY II. Bioenergetics; anaerobic and aerobic metabolism; lipid and protein metabolism; regulatory mechanism; replication, transcription, and translation of genetic information; molecular physiology. Intermediary metabolism, including catabolic and anabolic processes involving carbohydrates, lipids, proteins, and nucleic acids. An independent study project is required. Prerequisite: CHEM 671-570. (3).

CHANGE: CHEM 573. SELECTED TOPICS IN BIOCHEMISTRY. (3).

TO: CHEM 573. SELECTED TOPICS IN BIOCHEMISTRY. May be repeated once for credit if topics are different. Prerequisite: departmental approval. (3).

CHANGE: CHEM 578. BIOCHEMICAL TECHNIQUES. Specialized laboratory methodology currently used in biochemistry. Prerequisite: CHEM 471; CHEM 571 or CHEM 575. (6 lab hours). (4).

TO: CHEM 578-672. BIOCHEMICAL TECHNIQUES. Specialized laboratory methodology currently used in biochemistry. Prerequisite: CHEM 471, CHEM 571 or CHEM 575. (6 lab hours). (4).

CHANGE: CHEM 580, 581. MOLECULAR BIOCHEMISTRY I, II. Examination of the organization of and functional mechanisms of gene expression at the molecular level. Prerequisite: CHEM 473 or 572. (3, 3).

TO: CHEM 580. MOLECULAR BIOCHEMISTRY I. Examination of the organization of and functional mechanisms of gene expression at the molecular level. Prerequisite: CHEM 473 or 572, CHEM 222 and 226; or graduate standing. (3).

TO: CHEM 581. MOLECULAR BIOCHEMISTRY II. Continuation of CHEM 580. Prerequisite: CHEM 473 or 572, CHEM 222 and 226; or graduate standing. (3).

CHANGE: CHEM 677. PROTEIN STRUCTURE. Discussion of forces involved in protein folding; overview of experimental and computational methods used to determine protein structure and homologies. Prerequisite: CHEM 471 or CHEM 570. (3).

TO: CHEM 677. PROTEIN STRUCTURE. Discussion of forces involved in protein folding; overview of experimental and computational methods used to determine protein structure and homologies. Prerequisite: CHEM 471 or CHEM 570 (3).

MUSIC

CHANGE: MUS 303. VOCAL LITERATURE I. A historical survey of the art song literature. (2)

TO: MUS 303. VOCAL LITERATURE I. A historical survey of the art song literature. Prerequisite: Junior standing. Music majors only. (2).

CHANGE: MUS 304. VOCAL LITERATURE II. A historical survey of opera and oratorio literature. (2).

TO: MUS 304. VOCAL LITERATURE II. A historical survey of opera and oratorio literature. Prerequisite: Junior standing. Music majors only. (2)
CHANGE: **MUS 311. INTRODUCTION TO MUSIC EDUCATION.** Class discussions on pedagogical procedures and philosophy. Unit teaching, including guitar, improvisation, music fundamentals through composition. Selected topics. (3)

TO: **MUS 311. INTRODUCTION TO MUSIC EDUCATION.** Class discussions on pedagogical procedures and philosophy. Unit teaching, including guitar, improvisation, music fundamentals through composition. Selected topics. **Prerequisite: Sophomore standing.** (3)

CHANGE: **MUS 312. KEYBOARD LITERATURE.** Chronological survey of keyboard literature. (3)

TO: **MUS 312. KEYBOARD LITERATURE.** Chronological survey of keyboard literature. **Prerequisite: Music majors only.** (3)

CHANGE: **MUS 316. INSTRUMENTAL CONDUCTING.** Rehearsal and stylistic techniques with repertory ensemble. Woodwind, brass, and percussion methods classes strongly recommended prior to enrollment. **Prerequisite: MUS 315.** (2)

TO: **MUS 316. INSTRUMENTAL CONDUCTING.** Rehearsal and stylistic techniques with repertory ensemble. Woodwind, brass, and percussion methods classes strongly recommended prior to enrollment. **Prerequisite: MUS 315.** (2)

CHANGE: **MUS 325. TECHNIQUES OF MARCHING BAND.** Current styles and trends of marching band. Concepts, drills, and charting. (2).

TO: **MUS 325. TECHNIQUES OF MARCHING BAND.** Current styles and trends of marching band. Concepts, drills, and charting. **Prerequisite: Music majors only.** (2).

CHANGE: **MUS 330. SELECTED TOPICS IN MUSIC.** Selected topics in music history and literature, music theory, or music education. Topics may vary. May be repeated once for credit. (1-3)

TO: **MUS 330. SELECTED TOPICS IN MUSIC.** Selected topics in music history and literature, music theory, or music education. Topics may vary. May be repeated once for credit. **Prerequisite: Junior standing.** (1-3)

CHANGE: **MUS 347. INTRO TO MUSIC TECH.** Introduction of technology as it applies to the field of music, including music notation, MIDI, Internet resources, and digital versus analog signals. **Prerequisite: MUS 106.** (1)

TO: **MUS 347. INTRODUCTION TO MUSIC TECHNOLOGY.** Introduction of technology as it applies to the field of music, including music notation, MIDI, Internet resources, and digital versus analog signals. Prerequisites: MUS 106; Music majors only. (1)

CHANGE: **MUS 371. ELEMENTARY SCHOOL MUSIC.** Acquisition of skills and current methodologies required for teaching recorder, Curwin hand signals, Orff instruments and orchestration, and Dalcroze movement. (3)

TO: **MUS 371. ELEMENTARY SCHOOL MUSIC.** Acquisition of skills and current methodologies required for teaching recorder, Curwin hand signals, Orff instruments and orchestration, and Dalcroze movement. **Prerequisite: Sophomore standing.** (3)

CHANGE: **MUS 376. TEACHING MUSIC IN THE ELEMENTARY SCHOOL-STRINGS.** Pedagogical procedures and techniques of starting beginner classes of string students in elementary schools. (1).
TO: MUS 376. TEACHING MUSIC IN THE ELEMENTARY SCHOOL-STRINGS. Pedagogical procedures and techniques of starting for beginner classes of string students in elementary schools. Prerequisite: Music majors only. (1).

CHANGE: MUS 381. CHORAL CONDUCTING I. Fundamentals of choral conducting with emphasis on treatment of text and other technical factors. Choral laboratory required. Prerequisite: MUS 213, MUS 315. (2)

TO: MUS 381. CHORAL CONDUCTING I. Fundamentals of choral conducting with emphasis on treatment of text and other technical factors. Choral laboratory required. Emphasis on expressive conducting and rehearsal techniques. Prerequisites: MUS 213, 315, and Sophomore standing.

CHANGE: MUS 382. CHORAL CONDUCTING II. Advanced choral conducting with emphasis on treatment of text and selection of literature. Choral laboratory required. Prerequisite: MUS 214, 381. (2)

TO: MUS 382. CHORAL CONDUCTING II. Advanced choral conducting with emphasis on treatment of text and selection of literature. Choral laboratory required. Prerequisites: MUS 214, 381, and Sophomore standing. (2)

CHANGE: MUS 383. CHORAL METHODS AND ADMINISTRATION. Choreographed ensemble methods and materials, direction of musical theatre, junior high school methods and materials. Choral laboratory required. (3)

TO: MUS 383. CHORAL METHODS AND ADMINISTRATION. Choreographed ensemble methods and materials, direction of musical theatre, junior high school methods and materials. Choral laboratory required. Methodologies and techniques for teaching junior and senior high school choral music. Teaching practicums and observation are required. Prerequisite: Sophomore standing. (3)

CHANGE: MUS 384. CHORAL LITERATURE AND ARRANGING. Senior high school choral methods, materials, and administration. Prerequisite: MUS 381. (3).

TO: MUS 384. CHORAL LITERATURE AND ARRANGING. Senior high school choral methods, materials, and administration. Prerequisite: MUS 381. The study of the historical choral repertoire, preparation of an octavo file, and arranging choral music for various voicings. Prerequisite: Sophomore standing. (3)

CHANGE: MUS 385. INSTRUMENTAL MUSIC PEDAGOGY. The study of pedagogical theory and practice of applied instrumental instruction.

TO: MUS 385. INSTRUMENTAL MUSIC PEDAGOGY. The study of pedagogical theory and practice of applied instrumental instruction. Prerequisite: Music majors only. (2).

ADD: MUS 193, 293, 393, 493, 593. SUMMER OPERA. Development of performance techniques specific to music theatre form; movement and gesture, improvisation, musical style and structure, vocal technique, development of listening and ensemble skills. (1,1,1,1,1).

PHYSICS AND ASTRONOMY

Change: PHYS 612. QUANTUM MECHANICS II. Continuation of Quantum Mechanics I. Prerequisite: PHYS 611. Corequisite: PHYS 618 (3).

To: PHYS 612. QUANTUM MECHANICS II. Continuation of Quantum Mechanics I. Prerequisite: PHYS 611. Corequisite: PHYS 618 (3).

Change: PHYS 625. SOLID STATE PHYSICS I. Properties of solids and solid state theory, lattices, lattice imperfections and vibrations, cohesive energy, band structure, magnetism, transport and optical properties. (3).

To: PHYS 625. SOLID STATE PHYSICS I. Properties of solids and solid state theory, lattices, lattice imperfections and vibrations, cohesive energy, band structure, magnetism, transport and optical properties. Corequisite: PHYS 611 (3).

Change: PHYS 627. ADVANCED THERMODYNAMICS AND STATISTICAL MECHANICS I. Theory and applications of the laws of thermodynamics and statistical mechanics from the classical and quantum viewpoints. (3).

To: PHYS 627. ADVANCED THERMODYNAMICS AND STATISTICAL MECHANICS I. Theory and applications of the laws of thermodynamics and statistical mechanics from the classical and quantum viewpoints. Corequisite: PHYS 611 (3).

THEATRE ARTS
DELETE: THEA 505, 506. MOTION PICTURE TECHNIQUES I, II. Methods and practices for the film performer. Prerequisite: consent of instructor. (3, 3).

DELETE: THEA 521. THE BLACK PLAYWRIGHT IN AMERICA. Development of black playwrights in American drama. (3).

DELETE: THEA 540. ADVANCED COLOR THEORY FOR DESIGNERS. Advanced study of color as it applies to conceptualization and affects theatrical design. (3).

DELETE: THEA 541. ADVANCED PROPERTY DESIGN AND CONSTRUCTION. Advanced study of property design and construction techniques typically used by working artisans. (3).

DELETE: THEA 542. ADVANCED COMMUNICATION FOR DESIGNERS. In-depth discussion and practical exercises designed to increase the theatrical designer’s ability to communicate with directors, performers, producers, and the various shops that will execute designs. (3).

DELETE: THEA 543. RENDERING FOR THE THEATRE. Exercises to improve rendering techniques by exploring a variety of media and styles. (3).
DELETE: **THEA 544. COSTUME SHOP MANAGEMENT.** Techniques for managing budgets, crew labor, work flow, fittings schedules, and other duties associated with effective management of a costume shop. (3).

DELETE: **THEA 545. THREE-DIMENSIONAL DESIGN.** Exercises designed to enhance the student’s knowledge of and ability to use a variety of media typically employed to fabricate three-dimensional items used in a theatre. (3).

DELETE: **THEA 546. ADVANCED COSTUME CRAFTS.** Advanced study of costume craft techniques and products used to satisfy special costume needs, including mask-making, fabric painting and dyeing, and special millinery skills. (3).

DELETE: **THEA 547. ADVANCED COSTUME CONSTRUCTION.** In-depth study of common construction techniques used to create garments, treatments used for finish work, and closures. (3).

DELETE: **THEA 548. PATTERN MAKING.** Study of techniques used in creating basic patterns. (3).

DELETE: **THEA 561. ADVANCED ACTING.** Intensive exploration of acting problems, approaches and techniques. Combines lectures on acting theory with applied studio work. (3).

DELETE: **THEA 562. ADVANCED STAGE MOVEMENT.** Studies in movement techniques for the advanced actor. (3).

DELETE: **THEA 565. ADVANCED VOICE AND DICTION.** Methods of production; analysis and training of each student’s voice; attention to individual career goals. (3).

DELETE: **THEA 566. ADVANCED ORAL INTERPRETATION FOR THE ACTOR.** Analysis and delivery of line studies and complete character studies of varying types and from various historical periods. Prerequisite: consent of instructor. (3).

DELETE: **THEA 569. ORIGINAL PERFORMANCE STUDIES.** A study in the creation of original performance works. Solo and group studies with nontraditional texts. (3).

DELETE: **THEA 570. SCENIC PAINTING FOR THE THEATRE.** Historical and modern theories and techniques of scenic painting for the theatre. (3).

DELETE: **THEA 571. ADVANCED THEATRE DESIGN GRAPHICS.** Exploration of the theory and techniques of drawing, composition and color as applied to design graphics for the theatre. (3).

DELETE: **THEA 572. ADVANCED STAGE COSTUMING.** Special problems in applied costume design, theory, and practice. Prerequisite: consent of instructor. (3).

DELETE: **THEA 573. ADVANCED STAGE LIGHTING.** The history, properties and functions of stage lighting, including production styles, script analysis, lighting formulae, psychological implications of light, color, space and form, composition. (3).

DELETE: **THEA 576. HISTORY OF DRESS AND DÉCOR I.** Historical survey of period styles in dress and décor as relevant to theatre arts from ancient Egypt to 1600. (3).

DELETE: **THEA 579. HISTORY OF DRESS AND DÉCOR II.** Historical survey of trends, innovations, and developments in the history of dress and décor from 1600 to the present, as pertaining to theatre arts. (3).

DELETE: **THEA 581. ADVANCED DIRECTING.** All phases of theatre work; current theories of production; preparation of director’s prompt book. Prerequisite: consent of instructor. (3).

DELETE: **THEA 582. ADVANCED DIRECTING TECHNIQUES.** All phases of theatre work; current theories of production; preparation of production book. Prerequisite: consent of instructor. (3).
DELETE: THEA 585. THEATRE MANAGEMENT. Promotion, finance and organization of educational, professional, and community theatre; practical experience in university and experimental theatre. (3).

DELETE: THEA 603. DIRECTED STUDY. (May be repeated for credit). (3).

DELETE: THEA 620. STUDIES IN THEATRE LITERATURE. Detailed study of some one period or figure. (May be repeated for credit). (3).

DELETE: THEA 621. BIBLIOGRAPHY AND RESEARCH. Introduction to graduate study in the theatre arts. (3).

DELETE: THEA 623. DRAMATIC THEORY. An intensive study of major dramatic forms and their structural principles as they relate to the total art form. (3).

DELETE: THEA 624. DEVELOPMENT OF THEATRE I. Lecture/seminar. Major trends and movements in theatre from the Greek period to 1850. (3).

DELETE: THEA 625. DEVELOPMENT OF THEATRE II. Lecture/seminar. Major trends and movements in theatre from 1850 to 1920. (3).

DELETE: THEA 626. DEVELOPMENT OF THEATRE III. Lecture/seminar. Major trends and movements in theatre from 1920 to the present. (3).

DELETE: THEA 627. MODERN DRAMA IN TRANSLATION. Development of European drama and dramatists forming the background of the last half of the 20th century. (3).

DELETE: THEA 628. MODERN THEATRE PRACTICES. Current operations and artistic organization of commercial, educational, and community theatre in the United States. Emphasis on production personnel policies and practices. (3).

DELETE: THEA 641. SCENIC DESIGN STYLES. Exploration and implementation of visual design styles and historical period styles through design projects based on individual studio practice. Prerequisite: consent of instructor. (3).

DELETE: THEA 642. COSTUME DESIGN FOR FILM AND TELEVISION. Designing costumes for video, television, and film. (3).

DELETE: THEA 651. PRODUCTION DESIGN. Special problems in scenic design for nontheatrical performance, including opera, ballet, television, and film. Prerequisite: THEA 571 and THEA 641. (3).

DELETE: THEA 661, 662, 663. ADVANCED ACTING PRACTICUM. Supervised studio projects designed to demonstrate superior proficiency in acting. (3, 3, 3).

DELETE: THEA 664. ACTING MODERN REALISM. The interpretation and performance of contemporary realistic plays, stressing particular physical and vocal techniques and modern acting approaches and applying critical analysis to a range of modern playwrights. (May be repeated once for credit). (3).

DELETE: THEA 665. ACTING SHAKESPEARE. The interpretation and performance of the plays of Shakespeare, stressing particular physical and vocal techniques and modern acting approaches and applying critical analysis to a range of Shakespearean works. (May be repeated once for credit). (3).

DELETE: THEA 666. ACTING IN ALTERNATIVE STYLES. The interpretation and performance of plays in styles exclusive of Shakespearean and modern realistic styles, from classical Greek to Absurdist, stressing particular techniques and applying critical analysis to representative playwrights. (May be repeated once for credit). (3).

DELETE: THEA 668. ADVANCED THEATRE PERFORMANCE TECHNIQUES. Advanced verbal and nonverbal communication methods and practice for media and live performance. (May be repeated for credit). (3).

DELETE: THEA 670. ADVANCED SCENIC PAINTING. Special problems in scenic painting applied to supervised studio projects. Prerequisite: THEA 570 or equivalent. (3).

DELETE: THEA 671, 672, 673. ADVANCED DESIGN PRACTICUM. Supervised studio projects designed to demonstrate superior proficiency in design for the theatre arts. (3, 3, 3). (May be repeated once for credit).
DELETE: **THEA 675. TECHNICAL DIRECTION AND TECHNOLOGY FOR THE THEATRE ARTS.** Analysis of the organization and operation of theatre facilities; emphasis on technological research. (3).

DELETE: **THEA 677. COMPUTER-AIDED DESIGN STUDIES FOR THE THEATRE.** A thorough investigation of a variety of current software being used in the industry stressing literateness in the subject matter and cognition of the scope of available programs. (3).

DELETE: **THEA 678. ADVANCED THEATRE PRODUCTION TECHNIQUES.** Advanced production practicum for theatre performances using traditional and advanced methods of technology. (May be repeated for credit). (3).

DELETE: **THEA 681, 682, 683. ADVANCED DIRECTING PRACTICUM.** Supervised studio projects designed to demonstrate superior proficiency in directing. (3, 3, 3).

DELETE: **THEA 684, 685. DIRECTING MODERN REALISM I AND DIRECTING MODERN REALISM II.** The interpretation and direction of contemporary realistic plays, stressing particular staging and production techniques, and applying these techniques to a range of modern playwrights. (THEA 685 is a continuation of THEA 684; description is the same). (3).

DELETE: **THEA 686, 687. DIRECTING SHAKESPEARE I AND DIRECTING SHAKESPEARE II.** The interpretation and direction of Shakespearean plays, stressing particular staging and production techniques, and applying these techniques to a range of Shakespearean comedies and dramas. (THEA 687 is a continuation of THEA 686; description is the same). (3).

DELETE: **THEA 688, 689. DIRECTING IN ALTERNATIVE STYLES I AND DIRECTING IN ALTERNATIVE STYLES II.** The interpretation and direction of nonrealistic, nonclassical plays, stressing particular staging and production techniques, and applying these techniques to a range of dramatic literature. (THEA 689 is a continuation of THEA 688; the description is the same). (3).

DELETE: **THEA 691, 692. PROBLEMS IN PRODUCTION.** Problems in several types of plays; experience as production assistant in University productions. (3, 3).

DELETE: **THEA 697. THESIS.** (1-12).

II. OTHER CATALOG CHANGES

ART

On page 151 of the 2005-06 Undergraduate Catalog:

CHANGE: Students may concentrate in ceramics, painting, printmaking, sculpture, and graphic/web design.

TO: Students may concentrate in ceramics, painting, printmaking, sculpture, and graphic/web design, imaging arts (photography and digital arts), painting, printmaking, or sculpture.

On page 152 of the 2005-06 Undergraduate Catalog:

CHANGE: A MAJOR IN ART FOR THE B.A. DEGREE consists of 33 hours of studio art including ART 101, 102, 103, 111, 202, 211, 321, 331, 340, and 371 or 372; and 9 hours of art history including Art History 283 and 284.

TO: A MAJOR IN ART FOR THE B.A. DEGREE consists of 33 hours of studio art and 9 hours of art history. The studio art requirements are including ART 101, 102, 103, 111, 211, 202 or 360, 211, 321, 331, 340, and 371 or 372 and 15 additional hours of ART courses. The art history requirements are and 9 hours of art history including Art History and ARHI 283, 284, and 3 additional hours of art history (ARHI) at the 300-level or higher.

New language: A MAJOR IN ART FOR THE B.A. DEGREE consists of 33 hours of studio art and 9 hours of art history. The studio art requirements are ART 101, 102, 103, 111, 211, 202 or 360, and 15 additional hours of ART courses. The art history requirements are ARHI 283, 284, and 3 additional hours of ARHI at the 300-level or higher.
CHANGE: A MINOR IN ART consists of ART 101, 111, 202, 321 or 371 or 372, 103 or 340; ARHI 283 or 284, and an additional 3 hours of studio art (ART) for a total of 21 hours.

TO: A MINOR IN ART consists of 18 hours of studio art and 3 hours of art history. The studio art requirements are including ART 101, 103, 111, and 9 additional hours of art studio (ART) courses. The art history requirement is 3 hours of art history (ARHI) at the 200-level, for a total of 21 hours. 202, 321 or 371 or 372, 103 or 340; ARHI 283 or 284, and an additional 3 hours of studio art (ART) for a total of 21 hours.

New language: A MINOR IN ART consists of 18 hours of studio art and 3 hours of art history. The studio art requirements are ART 101, 103, 111, and 9 additional hours of art studio (ART) courses. The art history requirement is 3 hours of art history (ARHI) at the 200-level.

CHEMISTRY AND BIOCHEMISTRY

On pages 158-159 of the 2005-2006 Undergraduate Catalog:
CHANGE: A MAJOR IN CHEMISTRY FOR THE B.S. DEGREE consists of the following 47 hours of chemistry courses: Chemistry 105, 106, 115, 116; 221, 222, 225, 226; 314; 331, 332, 337; 401, 402; 423, 469, 471, two semesters of 463, and an advanced course chosen from 473, 501, 512, 519, 527, 528, 529, 530, 531, 532, or 563. Mathematics 261, 262, 263, 264, and either 353 or 319 as well as Physics 211, 212, 221, 222 are also required. The B.S. degree is certified by the American Chemical Society.

TO: A MAJOR IN CHEMISTRY FOR THE B.S. DEGREE consists of the following 47 hours of chemistry courses: Chemistry 105, 106, 115, 116; 221, 222, 225, 226; 314; 331, 332, 337; 401, 402; 423, 469, 471, two semesters of 463, and an advanced course chosen from 473, 501, 512, 519, 527, 528, 529, 530, 531, 532, 534, 544, or 563. Mathematics 261, 262, 263, 264, and either 353 or 319 as well as Physics 211, 212, 221, 222 are also required. The B.S. degree is certified by the American Chemical Society.

CHANGE: A MAJOR IN CHEMISTRY FOR THE B.A. DEGREE consists of the following 28-30 hours of courses: Chemistry 105, 106, 115, 116; 221, 222, 225, 226; 314; 331; 401 and either 415, 423, 469, 471, or two semesters of 463. Mathematics 261, 262 and Physics 211, 212, 221, 222 or Physics 213, 214, 223, 224 are also required.

TO: A MAJOR IN CHEMISTRY FOR THE B.A. DEGREE consists of the following 28-30 hours of chemistry courses: Chemistry 105, 106, 115, 116; 221, 222, 225, 226; 314; 331 or 334; 401 and either 415, 423, 469, 471, or two semesters of 463; and two courses chosen from 332, 401, 415, 423, 463(3), 469, 471. Mathematics 261, 262 and Physics 211, 212, 221, 222 or Physics 213, 214, 223, 224 are also required.

SAMPLE PROGRAM FOR THE B.A. DEGREE IN CHEMISTRY

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Courses</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 314</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry 331 or 334</td>
<td>3</td>
</tr>
<tr>
<td>Fine or performing arts</td>
<td>3</td>
</tr>
<tr>
<td>Social science</td>
<td>3</td>
</tr>
<tr>
<td>Humanities</td>
<td>3</td>
</tr>
<tr>
<td>Minor subject</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>32</td>
</tr>
</tbody>
</table>
SENIOR YEAR

<table>
<thead>
<tr>
<th>Courses</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 401</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry electives</td>
<td>5-7</td>
</tr>
<tr>
<td>Minor subject</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td>15-17</td>
</tr>
<tr>
<td>Total 126</td>
<td></td>
</tr>
</tbody>
</table>

*May be chosen from any combination of two courses from: CHEM 332, 401, 415, 423, 463(3), 469, 471.

*On page 360 of the 2005-2006 Undergraduate Catalog:
DELETE: Chemistry 222, 226, and 331 are prerequisite to all 500-level courses except 543, 546, and 547.

MODERN LANGUAGES

*On page 182 of the 2005-06 Undergraduate Catalog
ADD: A MAJOR IN CHINESE FOR THE B.A. DEGREE requires 30 semester hours beyond the 200-level credits. Students must complete a minimum of 9 of the 30 upper-division credits in residence on The University of Mississippi campus at Oxford, Tupelo, or Southaven. A maximum of 15 of the 30 upper-division credits for the major may be taken through an approved study abroad program.

THEATRE ARTS

*On page 489 of the 2005-06 Undergraduate Catalog:
DELETE: “All 500-level courses in theatre arts can be taken only for graduate credit.”

III. OTHER BUSINESS

1. Dr. Maurice Eftink and Dr. Kathy Gates demonstrated the new online faculty activity report form and discussed the dates that the system will be open for faculty submission and chair review.
2. Assistant Dean Reynolds discussed the new mathematics requirement for transfer student admission that was passed by the Council of Academic Administrators in February.
3. Dean Hopkins discussed
 a. the large number of add slips coming to the College office after the second week of classes.
 b. the need for department chairs to carefully consider the academic integrity of study abroad and branch campus courses.
 c. the availability of temporary storage space offered by Physical Plant
 d. the availability of grant writing assistance by the Office of Outreach
 e. the opportunity to use TV Channel 99 for advertisements or other departmental purposes
 f. the failed proposal to the Council of Academic Administrators to limit faculty teaching in the summer to no more than 4 classes, which includes May and August intercession but not online courses. He reminded the department chairs that faculty in the College are limited to no more than 3 classes in the summer without his approval.
 g. the passage of a plus/minus grading system by the Council of Academic Administrators, which will now go to the Chancellor for his approval. The effective date has yet to be determined, although Fall 2007 was a suggested date.
 h. the response rate for online teaching evaluations was 86% for last semester.
4. Associate Dean Vernon mentioned the need to be aware of on-line course testing environments. Are proctored environments used for exams? Is this a concern for academic honesty?